ML第6周学习小结(Ml week 6 learning summary)-其他
ML第6周学习小结(Ml week 6 learning summary)
本周收获
总结一下本周学习内容:
-
1、学习了《深入浅出Pandas》的第六章:Pandas分组聚合
6.1概述
6.2分组
6.3分组对象的操作
我的博客链接: Pandas 分组聚合 :分组、分组对象操作
- 6.1概述
- 6.2分组
- 6.3分组对象的操作
- 我的博客链接: Pandas 分组聚合 :分组、分组对象操作
-
2、《Python机器学习基础教程》第四章p161-p180
分类变量
我的博客链接:数据表示与特征工程–分类变量
分箱、离散化、线性模型与树
我的博客链接:数据表示与特征工程–分箱、离散化、线性模型与树
交互特征与多项式特征
我的博客链接:数据表示与特征工程–交互特征与多项式特征
单变量非线性变换
我的博客链接: 数据表示与特征工程–单变量非线性变换
-
分类变量
我的博客链接:数据表示与特征工程–分类变量
- 我的博客链接:数据表示与特征工程–分类变量
-
分箱、离散化、线性模型与树
我的博客链接:数据表示与特征工程–分箱、离散化、线性模型与树
- 我的博客链接:数据表示与特征工程–分箱、离散化、线性模型与树
-
交互特征与多项式特征
我的博客链接:数据表示与特征工程–交互特征与多项式特征
- 我的博客链接:数据表示与特征工程–交互特征与多项式特征
-
单变量非线性变换
我的博客链接: 数据表示与特征工程–单变量非线性变换
- 我的博客链接: 数据表示与特征工程–单变量非线性变换
下周计划
我的下周flag是:
-
1、《深入浅出Pandas》的第六章:Pandas分组聚合
6.4 聚合统计
6.5 数据分箱 - 6.4 聚合统计
- 6.5 数据分箱
-
2、《Python机器学习基础教程》第四章:数据表示与特征工程
自动化特征选择
单变量统计
基于模型的特征选择
迭代特征选择利用专家知识
-
自动化特征选择
单变量统计
基于模型的特征选择
迭代特征选择 - 单变量统计
- 基于模型的特征选择
- 迭代特征选择
- 利用专家知识
————————
Harvest this week
Summarize the learning content of this week:
- 1. I learned Chapter 6 of pandas in simple terms: Pandas grouping aggregation
6.1 general
6.2 grouping
6.3 operation of grouped objects
My blog link: Pandas grouping aggregation: grouping, grouping object operation - 6.1 general
- 6.2 grouping
- 6.3 operation of grouped objects
- My blog link: Pandas grouping aggregation: grouping, grouping object operation
- 2. Chapter 4 p161-p180 of basic Python machine learning tutorial
Categorical variable
My blog link: data representation and Feature Engineering — Classification variables
Box division, discretization, linear model and tree
My blog link: data representation and Feature Engineering — box division, discretization, linear model and tree
Interactive features and polynomial features
My blog link: data representation and Feature Engineering — interactive features and polynomial features
Univariate nonlinear transformation
My blog link: data representation and Feature Engineering — univariate nonlinear transformation - Categorical variable
My blog link: data representation and Feature Engineering — Classification variables - My blog link: data representation and Feature Engineering — Classification variables
- Box division, discretization, linear model and tree
My blog link: data representation and Feature Engineering — box division, discretization, linear model and tree - My blog link: data representation and Feature Engineering — box division, discretization, linear model and tree
- Interactive features and polynomial features
My blog link: data representation and Feature Engineering — interactive features and polynomial features - My blog link: data representation and Feature Engineering — interactive features and polynomial features
- Univariate nonlinear transformation
My blog link: data representation and Feature Engineering — univariate nonlinear transformation - My blog link: data representation and Feature Engineering — univariate nonlinear transformation
Plan for next week
My next week’s flag is:
- 1. Chapter 6 of pandas in simple terms: Pandas grouping aggregation
6.4 aggregation statistics
6.5 data distribution box - 6.4 aggregation statistics
- 6.5 data distribution box
- 2. Chapter 4 of basic tutorial of Python machine learning: data representation and Feature Engineering
Automatic feature selection
Univariate statistics
Model based feature selection
Iterative feature selection
Using expert knowledge - Automatic feature selection
Univariate statistics
Model based feature selection
Iterative feature selection - Univariate statistics
- Model based feature selection
- Iterative feature selection
- Using expert knowledge